
Abstract. We describe extensions and tests of the code
``multimode'' which does vibrational self-consistent ®eld
method (VSCF) and two types of state-mixing (denoted
VSCF-CI and V-CI) for rovibrational energies of many-
mode systems. The extensions include an exact treatment
of rotation, ¯exible approaches to perform the CI
calculations, and the inclusion of a Davidson diagonal-
ization routine to ®nd low-lying eigenvalues of large
matrices. The code is tested against previous exact
variational calculations for non-rotating H2CN, and
J � 0 and J � 1 rovibrational states of H2CS. The code
represents the full potential by a hierarchical n-mode
representation, where n is the number of normal
coordinates that are coupled together. Tests are pre-
sented for the convergence and accuracy of this repre-
sentation for n equal to 3 and 4, where 4 is the current
maximum value. These tests are done at the VSCF and
V-CI level, with very encouraging results.

Key words: Vibration-rotation energies ± H2CN ±
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1 Introduction

The accurate calculation of rovibrational energies of
many-mode molecular systems is a goal of computa-
tional chemistry that is as challenging as it is important.
While this goal has essentially been realized for triatomic
molecules up to and even above dissociation, and for
low-lying states of tetraatomics, there are well-known
bottlenecks that prevent facile scale-up of methods that
are accurate and e�cient for these size molecules. These
include the N2 ÿ N 3 dependence on ®nding eigenvalues

and eigenvectors of the Hamiltonian matrix of order N
(the size of which grows exponentially with the number
of degrees of freedom), the exponential increase in the
number of grid points with the number of degrees of
freedom, etc. This has meant that for systems with more
than four atoms, and certainly for systems with say 10 or
more atoms, the frequent method of choice, normal-
mode analysis, is also the method of necessity.

Clearly, there is a large gap in accuracy and realism
between a normal-mode analysis and an ``exact'' calcu-
lation. For example, one obvious limitation of a normal-
mode analysis is the lack of coupling among modes. This
precludes a description of line shapes, frequency shifts,
energy transfer, relaxation, etc. A very viable approach
to ®ll this gap is the vibrational self-consistent ®eld
(VSCF) method (see [1] for reviews). This method has
been scaled up by two groups to address the vibrations
of many-mode systems [2±4]. In our ®rst code [3] and the
code of Gerber and co-workers [2] the Watson Hamil-
tonian [6] is used; however, coriolis coupling constants
are neglected. In a newer code, which we have named
``multimode '', the exact Watson Hamiltonian for zero
total angular momentum, i.e., including coriolis cou-
pling constants, is used in both VSCF and two types
of con®guration interaction (CI) calculations [4]. An
approximate treatment of overall rotation, termed the
adiabatic rotation approximation (ARA), was also used
in that code to obtain vibration/rotation energies. This
code was tested against previous exact calculations for
non-rotating HCO [4b], and non-rotating and rotating
HO2 and H2O [4c]. In the non-rotating cases, J � 0, the
CI energies obtained with ``multimode'' were in excellent
agreement with the other earlier ones. For the rotating
cases, J > 0, the CI energies using the ARA were in
excellent agreement with exact calculations for HO2,
which is a near prolate symmetric top, but only in good
to very good agreement with exact calculations for H2O,
which is a strongly asymmetric top.

The application of the Watson Hamiltonian to a
molecule/molecular system of any size is conceptually
straightforward; however, the implementation for many-
mode systems is severely hampered by the apparent large
dimensionality of the potential, which is in principle of
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dimension N , where N is the number of vibrational de-
grees of freedom. Thus, any exact approach, which in
principle scales very non-linearly with this dimension,
would be unfeasible for large molecules. Historically,
this large dimensionality problem was circumvented by
expanding the potential in a Taylor series in normal
coordinates about an equilibrium geometry. In practice
this has only been done for relatively small molecules,
and even then there are a number of possible pitfalls
with the approach. The ®rst is the uncertainty in the
radius of convergence of such an expansion. (The ex-
pansion in rectilinear normal coordinates typically re-
quires more and higher order terms than the expansion
in bond lengths and bond angles.) A second pitfall is the
unphysical behavior of the expansion in the limit of large
values of the normal coordinates, i.e., the potential is
virtually guaranteed to diverge to in®nity.

With these limitations of the Taylor series expansion
in mind, we suggested the following hierarchical repre-
sentation of the N -mode potential [4]:

V �Q1;Q2; . . . ;QN � �
X

i

V �1�i �Qi� �
X

ij
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V �4�ijkl �Qi;Qj;Qk;Ql� �1�

where the one-mode representation of the potential
contains only V �1�i �Qi� terms, the two-mode representa-
tion contains those terms plus the V �2�ij �Qi;Qj� terms, etc.
Thus, explicit coupling of up to a maximum of four
modes can be done. Note that Jung and Gerber [2c] have
used a similar representation in their recent work on
water dimers; however, they considered a maximum of
two-mode coupling.

As mentioned above, the tests we reported previously
were for triatomic molecules, which have three vibra-
tional modes, and so the above representation of the
potential is exact at just the three-mode level. In this
paper we report tests of the three- and four-mode rep-
resentations of the potential for two tetraatomic mole-
cules, H2CN and H2CS, which have six vibrational
degrees of freedom. In addition, we have made several
extensions to ``multimode'', the most signi®cant one of
which is a full treatment of overall rotation, which is
exact for triatomics. Thus, we report the results of CI
and VSCF calculations using three- and four-mode
representations of the potential for both non-rotating
and rotating cases for the above tetraatomics against
accurate variational calculations. Another extension we
have made to ``multimode'' is the incorporation of an
iterative diagonalization algorithm which is very similar
to the Davidson method [5]. Finally, we discuss some
new features to CI calculations, both for J � 0 and
J > 0. All of these new features of the code are dem-
onstrated in this paper.

In the next section we review the theoretical basis of
the code and describe the extensions of the code. Tests of
the code are presented in Sect. 3, along with new results
for highly rotating H2CS.

2 Theory and extensions to ``multimode''

The complete Watson Hamiltonian in normal coordi-
nates (and in atomic units) is given by [6]:
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where Ĵa and p̂a are the components of the total and
vibrational angular momentum operators, respectively,
l is the e�ective reciprocal inertia tensor, and V �Q� is
the potential, which depends on the normal coordinates,
denoted collectively by Q.

The procedure to ®nd the eigenvalues and eigen-
functions of Ĥ using a direct-product of harmonic-os-
cillator functions has been given in detail by Whitehead
and Handy [7]. We follow many of the details given by
them in setting up our CI for J > 0; however, we begin
from a VSCF Hamiltonian, as described previously [4,
8]. In addition, and as already noted, we represent the
many-mode potential in the hierarchical expansion given
above. This reduces the computational e�ort in doing
numerical quadratures enormously, and makes it possi-
ble to extend the Watson Hamiltonian to many-mode
systems at the VSCF and CI levels of theory. To go
beyond the VSCF level of accuracy we have imple-
mented two types of ``CI'', as described in detail previ-
ously [4].

Our method of calculation in ``multimode'' for J � 0
is exact, providing the following conditions are met: ®rst,
integration over the potential and inverse moment of
inertia l is converged for coupling of no more than four
normal coordinates; and second, that su�cient VSCF
functions are included in either of the CI procedures so
as to converge the resulting vibrational energies. The
®rst condition is, of course, exactly met for triatomic
molecules, where the total number of modes is three. We
have con®rmed in earlier work that exact vibrational
energies are obtained in this case for HCO [4b], and HO2

and H2O [4c]. This was demonstrated using both CI
options, one in which a non-orthogonal basis of VSCF
functions is mixed, and the other where an orthogonal
basis of eigenfunctions of a given VSCF Hamiltonian is
mixed.

One goal of the present paper is to test the code for
J � 0 for tetraatomic molecules. In this case, where there
are six normal modes, the convergence and accuracy of
the three- and four-mode representations of the poten-
tial and l is the primary focus of inquiry. We have
chosen two tetraatomic molecules for this and subse-
quent test purposes. These are H2CN, for which we have
recently published a new potential together with J � 0
results from our VSCF method and also from exact
variational calculations [4a], and H2CS, for which we
have recently re®ned the potential energy surface to ex-
perimental spectroscopic data for J � 0 and J � 1 using
an exact variational procedure [9]. Of course, an un-
ambiguous test also requires convergence of the CI en-
ergies, and in going from a triatomic to a tetraatomic the
size of the CI matrix can grow dramatically. One way to
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reduce the size of the matrix is to use symmetry (where
applicable), and we have incorporated this into our CI
procedures, although currently for C2v symmetry only.
The procedure is quite general even for molecules whose
fundamental vibrations span di�ering numbers of
C2v irreducible representations (H2O : A1; B2;H2CO :
A1; B2; B1;Fe(CO)4XY : A1; B2; B1; A2�. Note that re-
duction of symmetry must take place for point groups
with symmetries higher than C2v (in the latter case C4v),
but this is quite straightforward from inspection of the
normal-mode vectors.

Even when symmetry can be exploited, additional
methods of reducing the matrix size are desired. Several
e�ective methods exist for this purpose. One, which we
use in a variational procedure for tetraatomic molecules,
is to use successive contraction schemes in the pure
stretch and bend/out-of-plane vibrations [10]. (Note that
this procedure also requires an expansion of the poten-
tial in bond lengths and angles so that the multidimen-
sional integrals can be done e�ciently.)

In the current version of ``multimode'' a simple di-
rect-product representation of the wavefunction is used.
Since we allow a maximum of four modes to couple in
the potential and inverse moment of inertia l, we assume
that a good approximation to the CI matrix will also
allow a maximum of four modes to be simultaneously
excited, since in our model, non-zero matrix elements
can only exist between functions which di�er in up to a
maximum of four modes only. Our current CI algorithm
is as follows: we allow all single-mode excitations to a
maximum of N1 quanta, two-mode excitations to a
maximum of N2 quanta each, three-mode excitations to
a maximum of N3 quanta each, and all four-mode ex-
citations to a maximum of N4 quanta each, respectively.
Coupled with this, we constrain the sum of all quanta to
be M1�� N1� for all one-mode bases (trivial), M2 for all
two-mode bases, M3 for all three-mode bases, and M4 for
all four-mode bases. For each of the normal modes k in
the system, we also de®ne individual maximum quanta
nj�k� for the j=1±4 mode coupling schemes �nj�k� � Nj�
as extra ¯exibility in forming the CI basis. For very large
molecules, this scheme will be useful in forming a CI
matrix which concentrates on a subset of vibrations;
however, in tetraatomics, we do not use the full ¯exi-
bility, but rather we form basis sets such as N1 � 7,
N2 � 6, N3 � 5 N4 � 4; M1 � M2 � M3 � M4 � 7;
�n1�k� � 7; n2�k� � 6; n3�k� � 5, n4�k� � 4, k � 1,
NMODE�. In this work, we use this particular basis, and
those obtained by increasing each of Nj; Mj; nj�k� by one
and two. We will refer to these bases as VCI(7), VCI(8),
and VCI(9), respectively, and we will give the details of
the size of the CI matrix in the next section.

Of course, any CI scheme can bene®t from an e�-
cient matrix diagonalization routine, and we describe an
iterative routine, based on the Davidson method [5], at
the end of this section.

2.1 Full treatment of rotation

We have coded the complete (exact) Whitehead-Handy
implementation of Watson's rovibrational kinetic energy

operator for non-linear molecules [7]. The algorithm
follows very closely that adopted in our variational
procedure, which was established in valence coordinates
[10]. Brie¯y, we carry out �2J � 1� ``vibrational'' calcu-
lations for each pair of quantum numbers Ka;Kc in turn,
to form the �2J � 1� diagonal blocks of the rovibrational
matrix, and then ®ll in the remaining non-zero blocks as
appropriate. To achieve this, we use the same primitive
VCI vibrational basis for each Ka±Kc block, multiplied
by the appropriate Wang combination of the usual
symmetric-top rotational functions.

Our rotational functions are ordered according to the
series

DJ
00; iDJ

01���; DJ
01�ÿ�; iDJ

02�ÿ�; DJ
02���; . . . �3�

and these correspond, in turn to Ka � 0; Kc � J ;
Ka � 1; Kc � J ÿ 1; Ka � 1; Kc � JKa � 2; kc � J ÿ 2;
Ka � 2; Kc � J ÿ 1; . . . ; which is the most convenient
way to order them since they then correspond to the
series cos�0c�, sin�1c�, cos�1c�, sin�2c�, cos�2c�; . . . ;
where c is the euler angle about the principal molecu-
lar-®xed z-axis. This series follows from the de®nition
of the symmetric-top rotational functions. These are
de®ned by

DJ
0Ka
� dJ

0Ka
�b� exp�iKac� �4�

where

dJ
0ÿKa
�b� � �ÿ1�KadJ

0Ka
�b� �5�

Inclusion of ``i'' in Eq. (3) completes the derivation.
Rotational matrix elements exist for DK � 0, DK � �1,
and DK � �2, where we have dropped the subscript
``a'' from Ka, and refer to it hereafter as K. There is
typographical error in Eq. (30) of the original White-
head-Handy paper [7], and also a sign error in Eq. (13)
of our ARA paper [4c]. We therefore give the complete
set of non-zero rotational matrix elements again here.
They are:

hJKjĴzjJKi � KhJKjJKi � K �6�
hJKjĴ2

z jJKi � K2 �7�
hJKjĴ2

x jJKi � hJKjĴ 2
y jJKi

� �1=2��J�J � 1� ÿ K2� �8�
hJK � 1jĴxjJKi � �ihJK � 1jĴy jJKi

� ��i=2���J � K��J � K � 1��12 �9�
hJK � 2jĴ2

x jJKi � ÿhJK � 2jĴ 2
y jJKi

� ÿ�1=4���J � K � 1��J � K � 2�
� �J � K��J � K ÿ 1��12 �10�

hJKjĴxĴy jJKi � ÿhJKjĴy ĴxjJKi � ÿ�iK=2� �11�
hJK � 2jĴzĴxjJKi � �ihJK � 1jĴzĴy jJKi

� �K � 1�hJK � 1jĴxjJKi �12�
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hJK � 2jĴxĴzjJKi � �ihJK � 1jĴy ĴzjJKi
� KhJK � 1jĴxjJKi �13�

hJK � 2jĴxĴy jJKi � hJK � 2jĴy ĴxjJKi
� ��i=4���J � K ÿ 1��J � K � 2�
� �J � K��J � K � 1��12 �14�

If we expand the complete Watson kinetic energy
operator given in Eq. (2), we can see that there are four
distinct types of terms. Terms in Ĵ2

x ; Ĵ
2
y ; Ĵ

2
z appear in the

K-diagonal blocks of the full matrix. Terms in Ĵz mix the
two blocks with equal K. Terms in Ĵx; Ĵy ; �ĴxĴz��, �Ĵy Ĵz��
mix blocks where K di�ers by one, and terms in
Ĵ 2

x ; Ĵ
2
y ; �ĴxĴy �� mix blocks where K di�ers by two. Each of

these terms also involves an element of the inverse mo-
ment of inertia tensor l, and the operators Ĵx; Ĵy ; Ĵz also
involve the vibrational angular momentum operators p̂a.
Careful inspection of the de®nition of the operator p̂a in
Eq. (2), together with the choice of rotational basis in
Eq. (3) shows that all elements in the complete rovi-
brational matrix are real.

Since C2v symmetry exists for the molecules under
discussion, we make use of this in constructing the four
discrete symmetry blocks for J > 0. In summary, the
complete rovibrational matrices comprise the following
vibration-rotation basis functions:

A1 : A1 � DJ
00; B1 � iDJ

01���; B2 � DJ
01�ÿ�;

A2 � iDJ
02�ÿ�; A1 � DJ

02���; . . . �15�
B2 : B2 � DJ

00; A2 � iDJ
01���; A1 � DJ

01�ÿ�;
B1 � iDJ

02�ÿ�; B2 � DJ
02���; . . . �16�

B1 : B1 � DJ
00; A1 � iDJ

01���; A2 � DJ
01�ÿ�;

B2 � iDJ
02�ÿ�; B1 � DJ

02���; . . . �17�
A2 : A2 � DJ

00; B2 � iDJ
01���; B1 � DJ

01�ÿ�;
A1 � iDJ

02�ÿ�; A2 � DJ
02���; . . . �18�

where the overall symmetry is for even J . For odd J ;A
must be interchanged with B�A1 ! B1; etc:�. For reduc-
tion of symmetry to Cs;A1 and B2 merge to form A0,
and A2 and B1 merge to form A00. In C1, all functions are
A.

As we have already noted, all terms in the Watson
Hamiltonian involving the J -operators contain some
contribution from the inverse moment of inertia l; some
of them also contain contributions from the operators
p̂a. Because our vibrational basis is the same for all
K-blocks, we can evaluate the matrix elements as func-
tions of the vibrational coordinates once only, and re-
peatedly multiply each matrix element by an appropriate
pure rotational matrix element to form the complete
Hamiltonian matrix. There are nine such sets required,
for Ĵ 2

x ; Ĵ2
y ; Ĵ2

z ; Ĵx; Ĵy ; Ĵz; �ĴxĴz��; �Ĵy Ĵz��; �ĴxĴy ��, and
these are stored on disk for repeated use over the
K-blocks.

2.2 Iterative diagonalization of large Hamiltonian
matrices

Even with the ways of reducing the size of the
Hamiltonian matrix outlined above in operation, it is
unavoidable that extremely large VCI matrices will be
encountered as the size of the molecule is increased. In
many such cases, for example, in high-J analyses, only a
fraction of the total number of eigenvalues will ever be
required. For matrices of the order of around 5000 we
use an e�cient Givens diagonalization routine. For
much larger matrices, the memory requirements of such
a procedure become prohibitive, and we have therefore
incorporated a Davidson-Lanczos-like diagonalization
procedure.

Starting from a primitive VCI product basis /k of size
M , we evaluate the diagonal Hamiltonian matrix ele-
ments Hkk. If we wish to calculate the lowest N eigen-
values Ei, we scan the matrix elements Hkk until we locate
the N lowest values, and note the corresponding posi-
tions k�i�; i � 1; 2; . . . ;N . We then de®ne a set of start-
ing functions

Y0�i� �
XM
k�1

Ck
0�i�/k; I � 1; 2; . . . ;N �19�

where, for each of the N functions, all Ck
0�i� are zero

except for position k�I� which is given the value 1. These
starting functions Y0�i� are therefore single-term prod-
ucts of orthonormal VCI functions and are represented
by the starting basis vectors X 0�i� � C0�i�. Correspond-
ing to each of these starting functions are the starting
eigenvalues E0�i� � Hk�i�;k�i�.

We now wish to form the improved functions:

Y1�i� � Y0�i� � y0�i�; i � 1; 2; . . . ;N �20�
where

y0�i� �
XM
k�1

wk
0�i�/k; i � 1; 2; . . . ;N �21�

Assuming that the expansion coe�cients wk
0�i� are small,

i.e., treating y0�i� as a ®rst-order correction to the
wavefunction, leads to the following equation for the
determination of wk

0�i�:
h/kjĤ ÿ E0�i�jY0�i� � y0�i�i � 0; i � 1; 2; . . . ;N �22�
Note that in deriving Eq. (22), changes in the eigenval-
ues, which are second-order in wk

0�i�, have been ignored.
Direct substitution of Eq. (21) into (22) and assuming
the Hamiltonian matrix is diagonally dominant leads to

wk
0�i� � ÿ sk

0�i� ÿ E0�i�Ck
0�i�

ÿ �
=�Hkk ÿ E0�i��;

i � 1; 2; . . . ;N �23�
where s0�i� is a vector given by the product H X 0�i�
where H is the Hamiltonian matrix.

Substitution of wk
0�i�, obtained from Eq. (23), into

(21) gives the correction function y0�i�. This function is
orthogonalized to the Y0�i�, i.e., the vectors W 0�i� are
Schmidt-orthogonalized to the set of vectors X 0�i� to
form an additional set of basis vectors, denoted X 1�i�.
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We now form the Hamiltonian matrix in the X 0�i� and
X 1�i� basis functions (of order 2N ) and diagonalize it.
This gives us two sets of coe�cients for X 0�i� and X 1�i�
which we designate by D0�i� and D1�i�, respectively. The
new (orthonormal) set of functions can therefore be
constructed from

C�i� � D0�i�X 0�i� � D1�i�X 1�i�; i � 1; 2; . . . ;N �24�
and these in turn yield the improved functions

Y1�i� �
XM

k

Ck
1�i�/k; i � 1; 2; . . . ;N �25�

in terms of the original primitive basis. The correspond-
ing eigenvalues are denoted E1�i�.

This process is repeated, i.e., ®rst-order corrections
to Y1�i� are obtained using Eq. (23) with the subscript
``0'' replaced by ``1'' and then the entire basis is ortho-

gonalized, the new 3N � 3N Hamiltonian matrix con-
structed and diagonalized, and so on to convergence.
When a particular eigenvector is converged, it is ``tag-
ged'' and further improvements of this eigenvector are
excluded. Therefore, the size of matrices to be diago-
nalized, whilst initially increasing in steps of N , ulti-
mately increase in much smaller steps.

In our current implementation in ``multimode'', the
complete Hamiltonian matrix H is written to disk in full
rows and read in as required. Other e�ciencies taking
account of available memory are also implemented. We
typically expect this procedure to work e�ciently when
the lowest 5% of the eigenvectors are required.

We are fully aware that this approach is similar if not
identical to other procedures for determining the lowest
eigensolutions of large matrices. We have spelt out our
implemented algorithm here because in this paper we are
giving full details of the new version of ``multimode''.

Table 1. Rovibrational energies of the fundamentals of H2CS
(cm)1) for J � 0 and 1, using the internal coordinate potential of
[9]. The full Watson Hamiltonian is used in these calculations

except for those headed ``ARA''. The exact calculations are from
[9]. See text for an explanation of the VCI basis sets

Assignment Exact VCI(4, 7) VCI(3, 7) VCI(3, 8) VCI(3, 9) VSCF(4)

J � 0
Zero point 5347.15 5347.11 5346.96 5346.93 5346.92 5375.40
Symmetry A1

0 1 0 0 0 0 1058.86 1059.54 1059.12 1059.08 1059.07 1060.07
0 0 1 0 0 0 1457.42 1457.72 1456.97 1456.78 1456.69 1490.93
1 0 0 0 0 0 2970.72 2971.90 2962.38 2961.69 2961.42 2970.07

Symmetry B2

0 0 0 0 0 1 990.94 991.77 990.99 990.88 990.83 1005.74
0 0 0 0 1 0 3024.58 3025.40 3033.61 3033.23 3033.07 3016.91

Symmetry B1

0 0 0 1 0 0 990.51 990.96 990.61 990.33 990.19 1004.73

VCI(4, 7) VCI(3, 7) VCI(3, 8) VCI(3, 9) VCI(3, 9) VSCF(4)
Exact Full Full Full Full ARA ARA

J � 1
Symmetry B1

0 0 0 0 0 0 1.14 1.14 1.14 1.14 1.14 1.14 1.14
0 0 0 1 0 0 0.63 0.78 0.55 0.64 0.68 10.28 10.26
0 0 0 0 0 1 19.85 19.60 19.81 19.73 19.68 10.36 10.36
0 1 0 0 0 0 1.13 1.14 1.14 1.14 1.14 1.14 1.13
0 0 1 0 0 0 1.14 1.14 1.14 1.14 1.14 1.15 1.14
1 0 0 0 0 0 1.14 1.14 1.14 1.14 1.14 1.14 1.14
0 0 0 0 1 0 10.17 10.17 10.30 10.24 10.19 10.19 10.11

Symmetry A2

0 0 0 0 0 0 10.27 10.26 10.28 10.28 10.28 10.30 10.29
0 0 0 0 0 1 1.14 1.14 1.14 1.14 1.14 1.15 1.14
0 1 0 0 0 0 10.26 10.26 10.27 10.27 10.27 10.30 10.28
0 0 1 0 0 0 10.36 10.31 10.29 10.29 10.29 10.36 10.35
1 0 0 0 0 0 10.16 10.21 10.24 10.23 10.23 10.29 10.18
0 0 0 0 1 0 1.14 1.14 1.14 1.14 1.14 1.14 1.14

Symmetry A1

0 0 0 0 0 0 10.30 10.30 10.31 10.31 10.31 10.33 10.32
0 0 0 1 0 0 1.14 1.14 1.14 1.14 1.14 1.15 1.14
0 1 0 0 0 0 10.29 10.29 10.30 10.30 10.30 10.33 10.31
0 0 1 0 0 0 10.39 10.35 10.33 10.33 10.33 10.39 10.38
1 0 0 0 0 0 10.20 10.25 10.28 10.27 10.26 10.32 10.22

Symmetry B2

0 0 0 1 0 0 0.63 0.78 0.55 0.64 0.68 10.24 10.23
0 0 0 0 0 1 19.86 19.61 19.82 19.73 19.69 10.39 10.39
0 0 0 0 1 0 10.20 10.21 10.34 10.27 10.22 10.23 10.15
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3 Results and discussion

For both H2CS and H2CN, we carried out a variety of
calculations using the new code, and results for J � 0
and 1 are given in Tables 1 and 2, respectively, and
compared with exact results obtained from converged
variational calculations [4a, 9]. Some new results for
J � 20 and 50 for H2CS are given in Table 3. In these
tables, VSCF(4) means VSCF calculations for four-
mode coupling of the potential and inverse moment of
inertia l, and VCI�n;m� means a CI basis VCI(m),
described in the previous section, together with an
n-mode representation of the potential and inverse
moment of inertia l. The purpose of VCI(3, n) results
is to track the convergence of the results with respect to
the CI basis size, while the VCI(4, 7) results give an
indication of the error in the three-mode and four-mode
representation of the potential. The VSCF(4) results are
given to assess the accuracy of pure VSCF levels.

First consider the results in Tables 1 and 2 for J � 0.
Two important aspects emerge from these tables. First,
the VCI results are seen to converge for su�ciently large
CI basis sets. [The basis sizes for VCI(4, 7) and VCI(3, 7)
are 563, 496, 288, 236, for the four vibrational symme-
tries, and the corresponding sizes for VCI(3, 9) are 1450,
1310, 765, and 640]. Second, and more importantly,
residual errors in the three-mode coupling are largely
eliminated in going to four-mode coupling of the po-
tential and inverse moment of inertia l. This is partic-
ularly true for the symmetric and asymmetric CH-
stretching vibrations in both molecules (m1 and m5). Note
that the four-mode VSCF results are of the expected,
semi-quantitative, level of accuracy.

Next consider the J � 1 rovibrational energies, which
are presented relative to the J � 0 energies discussed
above. For VSCF(4) and VCI(3, 9) we also present ARA
results. (This approximation was tested recently by us
for HO2 and H2O [4c] and found to be quantitatively

Table 2. Rovibrational energies of the fundamentals of H2CN (cm)1) for J � 0 and 1 using the internal coordinate potential of [4a]. Exact
calculations are also from [4a] and see Table 1 and the text for the meaning of the other acronyms

Assignment Exact VCI(4, 7) VCI(3, 7) VCI(3, 8) VCI(3, 9) VSCF(4)

J � 0
Zero point 5496.85 5496.83 5496.73 5496.71 5496.71 5519.91
Symmetry A1

0 0 1 0 0 0 1363.13 1363.22 1362.47 1362.41 1362.39 1373.18
0 1 0 0 0 0 1657.43 1657.82 1657.15 1657.09 1657.08 1662.56
1 0 0 0 0 0 2877.08 2877.03 2875.77 2875.51 2875.42 2913.26

Symmetry B2

0 0 0 0 0 1 934.95 934.97 934.91 934.82 934.79 946.16
0 0 0 0 1 0 2934.09 2934.11 2941.68 2941.44 2941.34 2939.50

Symmetry B1

0 0 0 1 0 0 972.67 973.41 972.65 972.55 972.52 978.53

VCI(4, 7) VCI(3, 7) VCI(3, 8) VCI(3, 9) VCI(3, 9) VSCF(4)
Exact Full Full Full Full ARA ARA

J � 1
Symmetry B1

0 0 0 0 0 0 2.43 2.43 2.43 2.43 2.43 2.43 2.42
0 0 0 0 0 1 8.09 8.04 7.96 7.97 7.96 10.71 10.65
0 0 0 1 0 0 13.38 13.23 13.26 13.26 13.26 10.77 10.66
0 0 1 0 0 0 2.44 2.44 2.44 2.44 2.44 2.43 2.43
0 1 0 0 0 0 2.42 2.42 2.42 2.43 2.42 2.42 2.41
1 0 0 0 0 0 2.43 2.43 2.43 2.43 2.44 2.43 2.42
0 0 0 0 1 0 11.57 11.53 11.48 11.28 11.23 10.53 10.40

Symmetry A2

0 0 0 0 0 0 10.64 10.61 10.61 10.61 10.61 10.64 10.58
0 0 0 0 0 1 2.44 2.43 2.43 2.44 2.43 2.43 2.42
0 0 1 0 0 0 10.73 10.67 10.66 10.65 10.65 10.68 10.64
0 1 0 0 0 0 10.64 10.61 10.60 10.61 10.60 10.64 10.59
1 0 0 0 0 0 10.49 10.54 10.56 10.56 10.57 10.57 10.48
0 0 0 0 1 0 2.43 2.43 2.43 2.44 2.43 2.42 2.42

Symmetry A1

0 0 0 0 0 0 10.80 10.77 10.77 10.77 10.77 10.79 10.73
0 0 0 1 0 0 2.43 2.42 2.42 2.42 2.42 2.43 2.43
0 0 1 0 0 0 10.90 10.84 10.83 10.82 10.82 10.84 10.80
0 1 0 0 0 0 10.80 10.77 10.76 10.77 10.76 10.80 10.74
1 0 0 0 0 0 10.66 10.70 10.72 10.72 10.73 10.73 10.64

Symmetry B2

0 0 0 0 0 1 8.24 8.19 8.11 8.11 8.11 10.87 10.80
0 0 0 1 0 0 13.25 13.11 13.13 13.14 13.13 10.62 10.51
0 0 0 0 1 0 11.70 11.59 11.62 11.43 11.38 10.69 10.56
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accurate for HO2 which is a near symmetric top, but of
less accuracy for H2O which is a strongly asymmetric
top.) For both H2CN and H2CS it can be seen that the
agreement with the exact variational results is very good,
with the noticeable exception of the coriolis resonance
between m4 and m6. This is particularly strong for H2CS,
where the fundamentals are only separated by
0:43 cmÿ1. Since the adiabatic rotational levels are ob-
tained by ®rst diagonalizing the rigid-rotor rotational
matrix, this e�ect can never be reproduced. However, as
seen, the more exact algorithm implemented in the new
version of ``multimode'', is able to reproduce the e�ect
of the coriolis coupling on the nearly degenerate m4 and
m6 modes.

In Table 3 we give the energies of the ®rst 20 rovi-
brational levels of A1 symmetry for H2CS, calculated
for J � 20 and J � 50. For J � 20, we compare results
for both the Givens method and the iterative diago-
nalization method described above. In this case, we
collect 100 functions from each K-block to give a
matrix size of �2J � 1�*100 � 4100. These results are
denoted �K� for both the Givens and iterative method
(denoted ``Iterdiag'') in the table. The iterative results
are converged to 0:001 cmÿ1 in less than 10 cycles. (In
fact the iterative diagonalization procedure gave the
lowest 100 eigenvalues to this level of convergence for
J � 20 and 50.) The comparison is, in principle, exact,
but there are slight di�erences due to the fact that we

have used a disk input/output option of REAL*4. The
time required to calculate rovibrational energies for
very large values of J becomes dominated by the
calculation of the ``vibrational'' K-diagonal blocks, of
which there are 2J � 1.

We are working on a new algorithm suggested to one
of us (S.C.) by W. Meyer. In this approach the K-diag-
onal blocks are calculated once every DK times, and
use the same contracted basis for all K from K to
K � DK ÿ 1. As a preliminary to this, we have reevalu-
ated the J � 20 rovibrational energies using a pure J � 0
basis throughout. These are denoted (0) in Table 3. It
can be seen that excellent agreement is obtained between
both sets of �K� and (0) results, given the inaccuracies
introduced by the disk input/output REAL*4 option at
all stages of the calculation. Although not in the table,
we have con®rmed that the J � 0 basis is good to about
Ka � 10, when the typical error is about 0:01 cmÿ1 using
the 100 functions/block matrix. Of these levels, only a
single assignment is in error. This suggests that when the
re®ned algorithm of Meyer is fully operational, these
small errors will be corrected.

The results for J � 50 are only calculated using the
iterative algorithm, with the J � 0 basis throughout. The
levels are again converged to 0:001 cmÿ1 in 10 cycles, as
above. The size of this matrix is 10100, which is too large
for our Givens procedure, and thus the iterative algo-
rithm is the only procedure we can apply to this large case.

Table 3. H2CS rovibrational energies (cm)1) for J � 20 and J � 50

J � 20 Assignment Ka Kc Givens (K) Iterdiag (K) Givens (0) Iterdiag (0)

1: 0 0 0 0 0 0 0 20 239.8958 239.8960 239.8958 239.8957
2: 0 0 0 0 0 0 2 19 277.7546 277.7541 277.7548 277.7547
3: 0 0 0 0 0 0 4 17 386.9786 386.9780 386.9788 386.9782
4: 0 0 0 0 0 0 6 15 569.7428 569.7415 569.7424 569.7412
5: 0 0 0 0 0 0 8 13 825.3872 825.3845 825.3864 825.3843
6: 0 0 0 0 0 0 0 11 1153.6512 1153.6478 1153.6494 1153.6465
7: 0 0 0 0 0 1 1 20 1229.2163 1229.2165 1229.2165 1229.2164
8: 0 0 0 1 0 0 1 19 1249.6897 1249.6899 1249.6902 1249.6901
9: 0 0 0 1 0 0 3 17 1283.0128 1283.0131 1283.0126 1283.0125
10: 0 1 0 0 0 0 0 20 1298.5943 1298.5941 1298.5945 1298.5945
11: 0 1 0 0 0 0 2 19 1335.1284 1335.1286 1335.1287 1335.1285
12: 0 0 0 0 0 1 3 18 1343.0294 1343.0298 1343.0292 1343.0293
13: 0 0 0 1 0 0 5 15 1407.8193 1407.8198 1407.8173 1407.8175
14: 0 1 0 0 0 0 4 17 1445.3238 1445.3237 1445.3234 1445.3236
15: 0 0 0 0 0 1 5 16 1506.0402 1506.0413 1506.0385 1506.0393
16: 0 0 0 0 0 0 2 9 1554.2173 1554.2120 1554.2127 1554.2093
17: 0 0 0 1 0 0 7 13 1604.8359 1604.8367 1604.8281 1604.8286
18: 0 1 0 0 0 0 6 15 1628.1061 1628.1055 1628.1056 1628.1055
19: 0 0 1 0 0 0 0 20 1697.0682 1697.0682 1697.0682 1697.0688
20: 0 0 1 0 0 0 2 19 1734.7951 1734.7958 1734.7953 1734.7960

J � 50 Assignment Ka Kc Iterdiag (0) J � 50 Assignment Ka Kc Iterdiag (0)

1: 0 0 0 0 0 0 0 50 1441.6694 11: 0 0 0 1 0 0 3 47 2556.8249
2: 0 0 0 0 0 0 2 49 1510.1424 12: 0 1 0 0 0 0 2 49 2570.4320
3: 0 0 0 0 0 0 4 47 1607.9454 13: 0 0 0 1 0 0 5 45 2626.1622
4: 0 0 0 0 0 0 6 45 1789.4601 14: 0 1 0 0 0 0 4 47 2662.6337
5: 0 0 0 0 0 0 8 43 2044.5547 15: 0 0 0 0 0 1 5 46 2724.6879
6: 0 0 0 0 0 0 10 41 2372.3671 16: 0 0 0 0 0 0 12 39 2772.4644
7: 0 0 0 0 0 1 1 50 2426.8575 17: 0 0 0 1 0 0 7 43 2822.0401
8: 0 0 0 1 0 0 1 49 2468.1004 18: 0 1 0 0 0 0 6 45 2844.5292
9: 0 1 0 0 0 0 0 50 2496.8692 19: 0 0 1 0 0 0 0 50 2901.8882

10: 0 0 0 0 0 1 3 48 2506.5290 20: 0 0 0 0 0 1 7 44 2959.6572
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4 Conclusions

In this paper we have presented details and tests of
extensions to our ``multimode'' program for the cal-
culation of rovibrational energy levels of many-mode
molecules using the Watson Hamiltonian. These exten-
sions include an exact treatment of rotation and several
options to perform ``CI'' calculations. The heart of the
method, which makes is feasible for many-mode sys-
tems, is the hierarchical representation of the potential
and inverse moment of inertia tensor. Currently this
representation is limited to a maximum of four-mode
coupling. Within this restriction, ``multimode'' can be
used to calculate rovibrational energies of many-mode
molecules using an exact procedure. An iterative diag-
onalization method has also been implemented into the
new code. This method is essential when dealing with
large Hamiltonian matrices (of the order of 104).

We reported test calculations for the fundamental
rovibrational energies of two tetraatomic molecules,
H2CS and H2CN, for which previous accurate varia-
tional results are available for J � 0 and 1. For the
former molecule we also reported rovibrational energies
for J � 20 and 50. In both cases the three-mode mode
coupling was shown to be accurate for these six-mode
molecules, with the exception of the symmetric and
antisymmetric CH stretches, where errors between 2 and
9 cmÿ1 were found. The four-mode representation of the
potential did, however, yield rovibrational energies in
excellent agreement with the accurate six-mode results.
The ARA was also tested and found to be quite accurate
except for the near-degenerate m4 and m6 modes of H2CS,
which are signi®cantly perturbed by coriolis coupling for
J > 0.

This code is available in source form. If interested in
obtaining it please contact either S.C. (email: s.carter@

reading.ac.uk) or J.M.B. (email: bowman@euch3g.
chem.emory.edu).
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